Search results for "Dorsal closure"
showing 8 items of 8 documents
Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins
2017
AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…
Planar Cell Polarity Signaling in Collective Cell Movements During Morphogenesis and Disease
2012
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cel…
Expression of Drosophila Cabut during early embryogenesis, dorsal closure and nervous system development.
2010
cabut (cbt) encodes a transcription factor involved in Drosophila dorsal closure (DC), and it is expressed in embryonic epithelial sheets and yolk cell during this process upon activation of the Jun N-terminal kinase (JNK) signaling pathway. Additional studies suggest that cbt may have a role in multiple developmental processes. To analyze Cbt localization through embryogenesis, we generated a Cbt specific antibody that has allowed detecting new Cbt expression patterns. Immunohistochemical analyses on syncytial embryos and S2 cells reveal that Cbt is localized on the surface of mitotic chromosomes at all mitotic phases. During DC, Cbt is expressed in the yolk cell, in epidermal cells and in…
Cbt modulates Foxo activation by positively regulating insulin signaling in Drosophila embryos.
2018
In late Drosophila embryos, the epidermis exhibits a dorsal hole as a consequence of germ band retraction. It is sealed during dorsal closure (DC), a morphogenetic process in which the two lateral epidermal layers converge towards the dorsal midline and fuse. We previously demonstrated the involvement of the Cbt transcription factor in Drosophila DC. However its molecular role in the process remained obscure. In this study, we used genomic approaches to identify genes regulated by Cbt as well as its direct targets during late embryogenesis. Our results reveal a complex transcriptional circuit downstream of Cbt and evidence that it is functionally related with the Insulin/insulin-like growth…
Cabut, a C2H2 zinc finger transcription factor, is required during Drosophila dorsal closure downstream of JNK signaling.
2005
AbstractDuring dorsal closure, the lateral epithelia on each side of the embryo migrate dorsally over the amnioserosa and fuse at the dorsal midline. Detailed genetic studies have revealed that many molecules are involved in this epithelial sheet movement, either with a signaling function or as structural or motor components of the process. Here, we report the characterization of cabut (cbt), a new Drosophila gene involved in dorsal closure. cbt is expressed in the yolk sac nuclei and in the lateral epidermis. The Cbt protein contains three C2H2-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. cbt mutants die as embryos with dorsal closure …
Drosophila as a model of wound healing and tissue regeneration in vertebrates.
2011
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosoph…
An Incremental Analysis of the Embryonic Development of the Tobacco Hornworm,Manduca sexta
1987
Summary A timetable of the embryonic development of Manduca sexta has been compiled to serve as a basis for physiological studies. Embryogenesis is complete within 117 hr at 24° C and was analyzed by examining specimens representing 20 stages, i.e. intervals of 5% of the total developmental time. Stage 0 denotes the newly deposited egg. Germ band formation, gastrulation, differentiation of tissues and organs, and blastokinesis are described in detail. By stage 1 (6 hr post-oviposition) the cellular blastoderm is evident and the presumptive serosal and embryonic cells are distinguishable. At stage 2 the germ band has separated from the blastoderm, and by stage 3 it has elongated enormously, …
Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins
2011
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-s-inducible early-response genes (TIEGs), which belong to Sp1-like/Kruppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and fu…